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An adaptive atmospheric flow model is described and results of integrations with this model 
are presented. The adaptive technique employed is that of Berger and Oliger. The technique 
uses a finite difference method to integrate the dynamical equations tirst on a coarse grid and 
then on finer grids which have been placed based on a Richardson-type estimate of the trunca- 
tion error in the coarse grid solution. By correctly coupling the integrations on the various 
grids, periodically re-estimating the error, and recreating the finer grids, uniformily accurate 
solutions are economically produced. The “primitive” hydrostatic equations of meteorology 
are solved for the advection of a barotropic cyclone and for the development of a baroclinic 
disturbance which results from the perturbation of an unstable jet. These integrations 
demonstrate the feasibility of using multiple, rotated, overlapping tine grids. Direct computa- 
tions of the truncation error are used to confirm the accuracy of the Richardson-type trunca- 
tion error estimates. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Accurately computing atmospheric flows is a difficult task. Integrations must be 
performed accurately and in a timely manner if the simulations are to be helpful to 
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coincide. The scheme is thus two-way interactive because the line grid solution does 
influence the coarse grid solution. 

The two-way interactive method has been implemented in two forms, one where 
the tine grid location is fixed and another where the line grid is allowed to move 
during the time integration. An example of the former is the nested grid model 
(NGM) which has been developed at the National Meteorological Center. The 
National Weather Service distributes NGM results as guidance to forecasters. The 
model consists of a hemispherical grid over which two liner grids have been placed. 
The fine grids are centered over North America because this is where forecast infor- 
mation is needed. 

Several tropical cyclone models have line grids which move during the integra- 
tion to keep the line grid over the cyclone. This is accomplished by moving the fine 
grid when a solution feature, such as the surface low associated with the cyclone, 
moves. In all cases the fine grids are aligned with the coarse grids, but they may 
move incrementally up, down, or sideways. Examples of these are tropical cyclone 
models described by Harrison [lo] and Jones [14]. 

The tropical cyclone models attempt to provide resolution around features which 
are local and poorly resolved by the coarse grid. The NGM provides increased 
resolution over a continent because increased resolution may be necessary there, 
but it is diflicult to know a priori precisely where it will be necessary. From a global 
perspective tropical cyclones, fronts, jet streams, and other atmospheric phenomena 
are spatially and temporally localized and are often poorly resolved in present 
atmospheric models. Local phenomena should be handled adaptively but no adap- 
tive atmospheric flow solvers exist. The nested tropical cyclone models are not truly 
adaptive. The initial location of the cyclone must be known to locate the line grid. 
The line grid will remain even if the cyclone disappears, and if a new cyclone were 
to appear elsewhere no new line grid would appear over it. 

Phenomena in many other fluid flows which are difficult to resolve are often 
localized. Adaptive solvers do exist for many of these flows. In general two adaptive 
strategies are used. In the first all existing gridpoints are redistributed from regions 
of small solution variation to regions of large solution variation. These global 
methods vary in the criteria and methods used to move the points, but in all cases 
the total number of points remains the same. They are usually used in conjunction 
with grid transformation methods which involve mapping an irregular physical 
domain into a rectangular computational domain. The second strategy involves 
adding or deleting grid points so as to obtain a desired solution accuracy. The 
additions and deletions are local, thus the techniques are local grid refinement 
techniques, 

Atmospheric flows appear ideally suited to local grid refinement techniques 
because the important phenomena are localized. The local grid refinement techni- 
ques can be broken into two categories: One in which the new points are inserted 
or imbedded into the existing grid, and hence only one grid exists, and a second 
where refinements are placed over the existing grid, the refinements constituting 
separate grids. 

581/80/l-3 
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A line example of embedding new points on an existing grid is the work of 
Dannenhoffer and Baron [8]. Their code solves transonic flow over a 2-D airfoil. 
Refinements are based on refinement parameters, for example, first or second order 
differences in the density, pressure, or entropy. An expert system handles the 
refinement parameters and rules governing how and where to reline. 

In this technique grids are no longer rectangular in nature and neither is the data 
structure which holds the solution fields. A significant amount of information must 
be stored to describe the grid structure. The solver which uses this grid structure is 
complex. Even with this complexity and loss of rectangularity much vectorization 
of the code is possible and efficient integrations are being performed. 

An example where refinements are placed over the existing grid is the scheme of 
Berger and Oliger [6]. The same scheme has been used by Berger and Jameson [5] 
who also solve transonic flow over a 2-D airfoil. In this technique the refinements 
are separate rectangular grids rather than being points embedded in the coarse grid. 
Any solver which works on a rectangle can be used, because the solver is just a 
module called by the .adaptive routines to advance the solution. Berger and 
Jameson calculate results similar to those of Dannenhoffer and Baron. There are 
many other differences ‘between the two schemes and interested readers should 
consult the referenced papers. 

Solver complexity is a strong barrier in NWP to techniques which imbed points 
into existing grids. Weather prediction codes solve much more than a simple set of 
dynamical equations. There are equations for water vapor (and possibly water in 
its other states), routines which calculate radiational heating and heating due to 
phase changes of water, routines which model cloud effects, complex calculations 
for fluxes of heat and moisture into the atmosphere, and usually parameterizations 
of other processes. Most codes are the result of many peoples’ effort over several 
years. Proven and tested routines are often borrowed from one code to put into 
another. Adaptive methods using refinements which are separate grids appear the 
logical choice for use as the basis of an adaptive weather model. Existing, well- 
tested software can often be used with only minor changes and procedures can be 
written with little knowledge of the adaptive routines. 

In this paper we present results from an adaptive atmospheric flow solver which 
uses the method and software developed by Berger and Oliger. The adaptive 
method operates on multiple, component grids. Fine grids, which overlie the coarse 
grid(s), are created and removed based on a Richardson-type estimate of the trun- 
cation error in the finite difference solution. The goal is to maintain a given 
accuracy for a minimum amount of work. This is the first attempt with this method 
to adaptively solve a system describing a three-dimensional time-dependent flow. 

Our purpose is to show that an adaptive atmospheric flow solver is feasible and 
that the adaptive technique will produce self-consistent results. In essence we are 
proving a concept, the concept being (1) that refinement should occur only where 
necessary, as dictated by the error in the numerical solution, and in this way 
improve the accuracy and overall resolution of the entire solution, and (2) that this 
can be accomplished by using the method of Berger and Oliger. Hence, we wish 
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only to demonstrate that our adaptive model is successful when compared with 
results from the same solver on a single grid, this being sufficient to demonstrate the 
feasibility of the adaptive atmospheric flow solver. For prediction purposes one 
would use the best available solver for the scales one is attempting to predict. 

In Section 2 we review the adaptive grid refinement technique of Berger and 
Oliger. The solution procedure is outlined along with a description of the data 
structure and program design. Section 3 describes the equations and solver we have 
used in the adaptive package. The initial test cases describe flow in an idealized 
atmosphere: adiabatic flow in a periodic channel with no moisture present in the 
atmosphere and no diabatic heating. We are using the Euler equations with the 
hydrostatic assumption, the so called “primitive equations” of meteorology. At the 
end of the section we discuss the issues of stability and accuracy for these equations 
as they are used in this adaptive context. In Section 4 we examine the results of two 
simulations, one for a barotropic cyclone and another for a baroclinically unstable 
jet, and show that our adaptive model is self consistent and successful in simulating 
these flows. We examine the error estimate in Section 5 and conclusions follow in 
Section 6. 

2. REVIEW OF THE ADAPTIVE GRID REFINEMENT TECHNIQUE 

We describe the adaptive procedure as used for 2-D hyperbolic problems. For 
large-scale atmospheric flows the horizontal scales are orders of magnitude larger 
than the vertical scales. In our adaptive model we refine in the horizontal and keep 
the same number of layers in the vertical. Thus we treat atmospheric flow as a 2-D 
grid retinement problem even though it is a 3-D flow. We are currently working on 
a model which will also refine in the vertical. 

The adaptive method is based on the idea of using multiple, component grids on 
which the partial differential equations are solved. Refined grids are created or 
removed based on a Richardson-type estimate of the truncation error in the finite 
difference solution. The goal is to maintain a given accuracy in the numerical 
solution for a minimum amount of work. A complete description of the method can 
be found in [2] and [6]. 

The solution procedure for the adaptive grid method is as follows. We begin with 
a solution on a coarse grid that has been integrated to some time t. The error intro- 
duced through the use of the numerical procedure is estimated at grid points and 
where these errors are judged to be too large the points are flagged. Then 2-D rec- 
tangular grids with finer meshes are fitted around these flagged points. These fine 
grids, which are completely separate from the coarse grid, may have orientations 
differing from the coarse grid. Initial and boundary conditions for these new tine 
grids are interpolated from the coarse grid solution and the fine grids are integrated 
along with the coarse grid to a new time t + At,, where At, is the coarse grid time 
step. Smaller time steps are taken on the tine grids to keep Ax/At constant. The 
coarse grid solution is then updated with the more accurate fine grid solutions. The 



32 SKAMAROCK, OLIGER, AND STREET 

updating consists of replacing the coarse grid solution at coarse grid points which 
lie inside of the fine grids with the appropriately averaged tine grid values. Trunca- 
tion error may also be estimated on the fine grids and still finer grids introduced. 
Thus, there can be several levels of tine grids. The errors on the grids can be 
re-estimated every few time steps and then new fine grids can be created and old 
fine grids removed. 

The large errors in the numerical solution are usually associated with sharp 
variations in the solutions, e.g., at fronts or other disturbances. By re-estimating the 
error after several time steps and regridding we create a scheme whereby the tine 
grids track the disturbances. The fine grids can be arbitrarily oriented and may 
overlap. This allows them to line up with the disturbances which minimizes the size 
of the fine grids and provides for better resolution in the numerical scheme. 

The program can be viewed as consisting of three components: (1) a data struc- 
ture, (2) a solver, and (3) management routines. Due to the constructs of FOR- 
TRAN the data structure is fixed. It stores the solution vectors for all grids and 
information about these grids. The information and where it is stored are altered 
by the management routines. These routines also pass to the solver the locations of 
the solution vectors in the data structure. The overall program can be viewed as the 
interaction between the solver and data structure with the management routines 
controlling this interaction and performing the necessary intergrid communication 
(setting boundary conditions and updating). 

The key algorithms are those which perform the integration, error estimation, 
and grid generation. To illustrate how they work, consider the grid arrangement 
shown in Fig. 1. There are several ways to advance the solution by one dt, on the 
grids. These are dependent on the interface conditions between the grids. For exam- 

Go,l(Ax =540hn) 
I 

GI,~(Ax =180km) 

FIG. 1. Adaptive run with two levels of refinement. Go is the coarse grid, G, line and Gz liner 
resolution grids. 
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ple, with a refinement ratio r = 3 (r = h,/hf = the ratio of the coarse grid Ax to the 
fine grid Ax), the integration order (from coarsest to finest) is 

Integration Sequence 
b 

GO GO 
G, Gl GI 

G, Gz G, G, Gz G, G, G Gz 

where Gj are grids at level i with i increasing for finer levels. Grids at level i are 
integrated r times as often as grids at level i- 1 but with dtj = dti- ,/r, thus all are 
integrated to the same point in time. The order of integration assures that all fine 
grids will have sources for boundary values. 

Error estimation is also repeated and solutions from the fine grids must be passed 
to the coarse grids. Errors are estimated and grids replaced on each level after a 
number of time steps specified by the user. Grids at level i will be replaced, based 
on an error estimate on level i- 1 grids, r times more often than grids at level i- 1. 
Solutions on level i are updated with those on a higher level when the higher level 
solutions have reached the same point in time. 

Errors on the various grids are estimated using a method based on Richardson 
extrapolation. If the solution is smooth the local truncation error can be expressed 
as 

4% t + k) - Q,(u(x, t)) = k(k%(x, t) + h=b(x, I)) 

+kO(k’l’+l+h=+l) 

=z+kO(kY’+‘+h42+1), (2.1) 

where ql, q2 are the orders of accuracy in time and space, Q,, is an operator 
representing the finite difference scheme and defined as U(X, t + k) = Q*(u(x, t)), and 
h and k correspond to Ax and At, respectively. If we let QZh be the same difference 
operator with step sizes of 2k and 2h and if we assume that the order of accuracy 
of the time and space differencing are equal and also that the solution is sufficiently 
smooth, then we can derive the following expression for the leading order term r 
of the truncation error: 

Q:Wv t)) - Q,,(~x, t)) 
p+‘--2 =z+O(hq+*) 

where Qi is the operator Qh twice applied to u(x, t). 
This gives us an estimate of the local truncation error at time t. The procedure 

is to take a giant step based on mesh widths 2h and 2k using the solution at time 
t and then to compare it with the solution found by taking two regular steps. The 
same solver used to integrate the equations can be used to estimate the error. The 
estimator is independent of the finite difference method and is also independent of 
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the PDE. The method does not produce accurate estimations of r for nonsmooth 
solutions but no problem is envisaged because the estimates will probably be large 
in these regions anyway and will lead to the desired regridding. 

Estimating the error at grid points is the first step in the regridding procedure. 
The regridding procedure is 

(1) flag points needing refinement, 
(2) cluster the flagged points, 
(3) lit rectangular grids around the clustered points, and 
(4) repeat if necessary. 

Gridpoints are flagged if the estimated error exceeds a user specified value. Cluster- 
ing the flagged points serves two purposes. First, it separates spatially distinct 
phenomena. In many problems there are often multiple shocks or fronts. These 
features will then be on different grids. The second purpose is to subdivide points 
when one large region should be fit with several grids. 

Clustering the grid points and fitting rectangles to the clusters are the most 
difficult parts of the regridding task. Inexpensive clustering algorithms are rarely 
satisfactory for both clustering purposes. For this reason, a simple algorithm is used 
for clustering in a first pass and, if this proves unsatisfactory, a more complex and 
expensive algorithm is used. The simple method produces clusters according to the 
nearest neighbor principle. If a point has any other point within some specified min- 
imum distance then these points are in the same cluster. This method works well 
for the first purpose, but very poorly for the second. The more complex methods 
use minimum spanning trees or nearest neighbor graphs. These structures connect 
the points in an organized way. An iterative method is then used which merges 
points with core groups of points and attempts to maximize the efficiency of a grid. 
The efficiency of a grid is a measure of how large the grid is compared to how many 
flagged points the grid contains. 

The last task the regridding algorithm must complete is to actually fit the 
rectangles to the clusters. There are several methods which will do this and some 
produce, on the average, more efficient rectangles than others. In the algorithm a 
simple, less expensive method is used because it works well and also must fre- 
quently be used in the clustering routine. The method tits rectangles by computing 
a least-squares fit line to the cluster of points. This line is the principal axis of the 
rectangle and an orthogonal line will be parallel to the other axis. It is then an easy 
matter to compute where the sides and the corners of the rectangles should be, 
though this is the most expensive part of fitting the rectangle. Finally, the rectangle 
is enlarged so as to provide a buffer zone between the flagged points (the phenon- 
mena) and the rectangle (line grid) boundaries. 

The data structure stores two kinds of information, descriptions of grids and the 
grid solution vectors. It is natural to think of these grids in the context of a tree, 
with the coarse grid being at the root of the tree. At each node of the tree lies a 
grid. Each grid (node) is characterized by 
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grid location, 
grid point specifications, 
level in tree, 
offspring pointer, 
sibling pointer, 
parent pointer, 
intersection pointer, 
pointer to the next grid at same level, 
time to which grid has been integrated, and 
index in storage array for solution on grid. 
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This information is stored for each grid at the nodes of the tree. Figure 2 shows an 
example of the tree for the grid system of Fig. 1. 

All solution vectors are stored in one array. This array is managed as a linked 
list of used and available blocks of storage. Storage is allocated in contiguous 
blocks by scanning the list of available blocks, taking the fist block that is 
large enough, and returning whatever space is unused. Reclaimed space can be 
re-inserted into the list and reused. The structure of FORTRAN does not allow for 
dynamic memory allocation outside the program, hence all storage is defined 
initially. 

We have described the algorithms which control the integration sequence, error 
estimation, clustering, gridiitting, and data management. The program is construc- 
ted modularly. The data structure and the methods used to alter it can be accessed 
by all routines. The user has only to supply an integration routine (a solver) which 
solves the equations that he is interested in. Purposes necessitating changes usually 
require altering only one or a few modules, and not the entire code. 

Our use of the adaptive grid method and the program just described is greatly 
facilitated by code modularity. The program contains the necessary algorithms and 
data structures to carry out the adaptive method outlined earlier. Many of these 
algorithms have been borrowed from the fields of computer science, mathematics 

sibling, new grid 

FIG. 2. Tree for grids of Fig. 1. Included are some of the pointers listed in the text. 
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and other disciplines and it is their application for numerical weather prediction 
that is new. 

3. PRIMITIVE EQUATIONS 

3.1. Equations 

We solve the Euler equations for dry, adiabatic large-scale atmospheric flows. 
The set commonly used for studying compressible fluid flows has as dependent 
variables u, v, and w, the horizontal and vertical velocities, and T, p, and p, the 
temperature, pressure, and density, with geometric coordinates x, y, and z. We 
make several changes to this set. 

Large-scale flows are very nearly hydrostatic, and making this approximation 
reduces the z momentum equation to the hydrostatic equation with the added 
benefit of removing sound waves from the solution. We also recast the system using 
the nondimensional pressure ~7 in place of the vertical coordinate z. The coordinate 
d is defined as 

where 7c is the surface pressure. Thus, at the surface p = pS = n, CJ = 1 and at the top 
of the atmosphere p = 0 and CJ = 0. The vertical coordinate o has a range 0 < g < 1. 

Using the definition rr= ps and C= p/n we can write the equation of state as 
csx = pRT and use it to eliminate the density p from the equations. The final step 
is the introduction of the variable 4 = gz, the geopotential, which replaces z as a 
dependent variable. The reduced Euler set, known as the hydrostatic primitive 
equations, is 

$ (ml) = -; (nuu) -; (nu’) - $ (nucf) - 7cfu - 71 g 

- RTLF,, 
ay 

ad -= -RT, 
a(ln 0) 

(3.1) 

(3.3) 

$c,T)= -v, .( 7zcp TV) -; (q, Tti) + nQ + RTw + xFT, (3.4) 

(3.5) 
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V=ui+vj, 

R = gas constant, 

geopotential+6 = gz, 

6 = au/at, 
0 = dpldt = ?ccf + g(alllat + v * V,x). 

The independent variables are X, y, cr, and t and the dependent variables are u, v, 
6, 4, 7c, and T. Equations (3.1) and (3.2) are the u and u momentum equations, 
(3.3) is the first law of thermodynamics, and (3.4) is the hydrostatic equation. 
Equation (3.5) is the transformed continuity equation. A complete derivation of 
these equations can be found in Holton [12] and Haltiner and Williams [9]. 

The need to make several other assumptions arises when these equations are 
used. The terms F,, F,,, and Q are forcing or source terms that account for pro- 
cesses not explicitly accounted for in the dynamics equations. The terms in the 
momentum equations theoretically include the effects of diffusion, both turbulent 
and molecular. In the thermodynamic equation Q represents latent and radiational 
heating and cooling, fluxes of heat from the boundaries and in essence all diabatic 
effects. Major assumptions underlying models often are found in the parameteriza- 
tions of these terms. 

In large-scale flows the effects of viscosity and turbulence have negligible con- 
tributions to the forcing terms F, and F,. Fourth order horizontal diffusion is 
included only to stabilize the numerical solution. This stabilizing diffusion term is 
also calculated for F, and F,. There is no vertical diffusion in any of the equations. 
We are solving for adiabatic flow; the model does not consider radiation effects and 
there are no sources of heat. 

Statically unstable temperature profiles are addressed using convective adjust- 
ment parameterizations. The use of the hydrostatic assumption in the equations 
removes the mechanism which allows the atmosphere to respond to instabilities in 
a vertical air column. Convection (vertical air motion) often takes place in the 
atmosphere as a response to an instability in an air column. The instability can be 
thought of as the presence of more dense air above less dense air. This instability 
cannot give rise to vertical motions because there is no feedback to a vertical 
momentum equation where aw/dt is driven by the forcing. A common approach is 
to parameterize convection that arises from these instabilities through the use of 
convective adjustment schemes. We describe a simple dry convective adjustment 
scheme used in this solver. For a more detailed explanation see Haltiner and 
Williams [9]. 

Air parcels can be characterized by their lapse rates y 
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If in a dry atmosphere the lapse rate at a point is greater than the dry adiabatic 
lapse rate, then a vertical adiabatic displacement of a parcel at this point will be 
unstable. This will produce vertical convection in the region. A simple way to 
parameterize this process is as follows: 

(1) Calculate the large-scale fields without considering instabilities. 
(2) Calculate the actual lapse rates and dry adiabatic lapse rates in a column. 
(3) Compare the lapse rates: 

YbYd stable 6T=O, 

Y’Yd unstable hT#O, 

yd is the dry adiabatic lapse rate, 

6T is temperature change in the column due to convection. 

In the first case nothiqg is done, for the column is stable. In the second case the 
vertical temperature piofile is adjusted to a neutral or slightly stable lapse rate Yd 
subject to the condition that total potential energy is conserved, i.e., 

s 

Zt 

zb 

c,STpdz=; 

where b and t represent the bottom and top of the unstable layer and cP is the 
specific heat of air at constant pressure. The scheme assumes that convection causes 
potential energy to be converted to kinetic energy which is eventually converted 
into internal energy. 

3.2. Discretization 

On a horizontal plane the grid used in this model is the C grid described in 
Arakawa and Lamb [ 11. The C grid is shown in Fig. 3. It resolves shorter waves 
well, helps accurately represent wave gr6up velocities and amplitudes, and possesses 

FIG. 3. Grid C. The variables T, 4, and x are found at p points. u and v are the velocities in the x 
and y directions (east and north). respectively. 
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very good geostrophic adjustment properties. Vertical differencing takes place on 
the grid shown in Fig. 4. The variables shown on the horizontal grid are carried 
between cr levels; (T and its time derivative are carried at Q levels. The surface 
pressure n and the surface geopotential 4, are defined at the surface. The o axis is 
always vertical, i.e., radially outward from the center of the earth, thus the values 
or gradients of rr or 4, at some point on a horizontal plane above the surface are 
taken as those values at the surface directly (vertically) below the point at the 
surface. 

We first consider how the equations are differenced on the horizontal o surfaces 
on the C grid. Centering a control volume over a u velocity point at (x, v), where 
x = i Ax and y = j. Ay, we can denote fluxes of u-momentum through the control 
volume faces in the x and y direction as F” and G”. The discretization for the 
horizontal advection terms in the u-momentum equation is 

where 

FY+ ll2.j = i t”i+ 1.j + ui,j) 

~(ui,j(71i-1/2,j+7Ci+1/2,j)+Ui+l,j(~i+1/2,j+71i+3/2~~))~ 

G!j + 112 =~C”i,j+l +“i,j) 

~(“i+l/2,j+1/2(7Zi+1/2,j+71if1/2,j+1) 

+ Vi- 1/2,j+ 1/2(7ci- 1/2,j + 7ci- 1/2,j+l)). 

o=o,ir=o 

R 

4, u, 21, T 
Au1 ------ k=l 

0, ir 

A 21, u, T 
Au5 - - - - - - kc5 

i,, , , , , fJ = 1,k = 0,ps,q5* 

FIG. 4. Vertical structure of the finite difference grid in the sigma (CT) coordinate system for a SIeveI 
model. 
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Vertical (a) derivatives, for example (8(7tuti)/&r), are computed as 

$(nud)=~(di,j,k+,,2(Ui,j,k+i + ui,,,k) 
k 

where the overbar denotes an averaged value for 71 and 6 at the points (I, j). The 
velocity u is averaged to arrive at a value of u at k f i. 

Similarly, we can center a control volume about a z point and denote “mass” 
fluxes through the surfaces as F, G, and s. The continuity equation (3.5) is finite 
differenced as 

a 1 1 
~~i,j+~(F~+ll~.j.k -Fi-,/2,,,k)+-(G;,,+1/2.k -Gi+jp~/2,k) AY 

+$ (Si,j,k+l/2 -Si,j,k-l/2)=0 
k 

where 

F. I + 1/2,J,k = i. ‘i+ l/2, j,ktni.J + ‘ii 1, j)Y 

G.. !,J+ 1/2,k = i ui,j+ 1/2,k(ni,j+ 1 + zi,j). 

The remaining terms in Eqs. (3.1 t(3.4) are differenced in a similar manner. The 
overall scheme will conserve mass (disregarding the diffusion term in the pressure 
tendency equation) but will not exactly conserve total (kinetic + potential) energy. 

The leapfrog method is used to integrate the spatially differenced equations in 
time. The method is explicit, second order in time and possesses good phase and 
amplitude wave propagation characteristics. Equations (3.1~(3.3) are marched 
forward in time. The surface pressure rt is found by integrating the continuity equa- 
tion (3.5) vertically at each R gridpoint. It is only when integrating this equation 
that the vertical boundary conditions (6 = 0 at (T = 0, 1) are needed. The vertical 
integration of (3.5) results in 

$= 5 v, .(7Cv)dO,. 
k=l 

The 6’s can be found by integrating (3.5) down to the required level. The geopoten- 
tial 4 is found by integrating the hydrostatic equation (3.4). 

The stability of the leapfrog scheme is limited by the CFL condition 

cAt 1 
-<-. 
Ax $ 
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The fastest waves in these equations are the gravity waves, where the external 
gravity wave travels approximately an order of magnitude faster than the 
meteorological waves of interest. These waves are important in the geostrophic 
adjustment process, thus they cannot be filtered out of the equations without some 
adverse affects. The gravity waves severely limit the maximum time step which can 
be used. 

The leapfrog scheme cannot be used to begin an integration because the variables 
at time t - At are not known. We use the forward Euler scheme to start the integra- 
tions. We also use the forward Euler scheme to begin integrations on newly created 
line grids. 

3.3. Boundary Conditions 

This problem is posed as an initial boundary value problem (IVBP). The initial 
values for the velocities u and u, the surface pressure pS or 71, and the temperature 
T or the geopotential 4 are necessary as initial conditions for the model. 

The boundary conditions which must be specified are those in the vertical (at the 
top and bottom sigma layers) and in the horizontal at the lateral boundaries. The 
choice of the sigma coordinates leaves us with very simple boundary conditions in 
the vertical. The conditions are 

(+d”=() 
dt 

at both the top (p = 0, CJ = 0) and the bottom (p = p, = rr, 0 = 1). At the surface 4, 
is specified and this serves as the lower boundary condition for the integration 
of the hydrostatic equation (3.4). At the upper and lower boundaries free slip 
conditions are applied for the u and u velocities and no flux conditions are applied 
for the temperature. 

The lateral boundary conditions may vary with the application of the model. Our 
test cases are for flow in a free slip, east-west periodic channel. The north-south 
boundaries are no flux (u = 0). We use these boundary conditions on the base 
(coarse) grid. 

For fine grid boundary conditions we specify U, u, T, and a at the boundaries 
using bilinearly interpolated values from another grid. The interpolation is in both 
space and time. In this regard, we are choosing to apply continuity conditions at 
the tine grid boundaries as opposed to treating each line grid as a separate initial 
boundary value problem where we would apply open boundary conditions. 

3.4. Primitive Equations Considerations 

Oliger and Sundstriim [ 163 have shown that the primitive equations are 
ill-posed for the initial boundary value problem with open boundaries. More 
specifically, they state that “local, pointwise boundary conditions cannot yield a 
well-posed problem for the open boundary problem for the hydrostatic equations.” 
This statement holds for the continuous equations and is based on examinations of 
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the behavior of appropriate norms of the solution. It logically follows that a 
discrete approximation of these equations cannot have a norm which behaves 
reasonably if it accurately approximates an ill-posed problem (Thorn&e [ 171). 

Limited area modellers have traditionally circumvented the problem of ill-posed- 
ness and resulting exponential error growth by including horizontal dissipation in 
their models and, more importantly, by using sponge-type boundary conditions and 
increased horizontal dissipation close to the boundaries. This leaves open the ques- 
tion of exactly what equations are being solved and the accuracy of the limited-area 
model solutions. Our example calculations are for flow in a periodic channel. The 
primitive equations are weakly well posed for these boundary conditions. 

The question also arises as to whether the primitive equations are ill-posed for 
solution on the local refinements (line grids). This would be the case if we chose to 
treat a line grid as a seperate IVBP and use boundary conditions appropriate for 
the equations. Instead we have chosen to use continuity conditions and interpolate 
all data from one grid on to the boundary of another. Now, we must consider the 
accuracy and stability of these conditions. 

There are no analyses for the primitive equations or for nonlinear hyperbolic 
equations concerning the accuracy or stability of our boundary scheme. For a 2-D 
model hyperbolic equation Berger [3] has shown that using leapfrog with overlap- 
ping grids and grid refinement in both time and space is stable. Our adaptive 
integrations of the primitive equations have also proven to be stable. 

Accuracy and conservation are related issues and there are few results concerning 
overlapping boundaries which are rotated with respect to each other. Berger [4] 
derives a conservative boundary scheme for use in solving hyperbolic systems of 
conservation laws on 2-D rotated rectangles. We do not implement the scheme here 
and know of no implementation of it. Henshaw [ 1 l] has found that when solving 
elliptic equations on overlapping grids one must use boundary value interpolation 
schemes that are at least as accurate as the interior numerical scheme and in some 
cases at least of one order higher accuracy. Browning et al. [7] show that solutions 
of hyperbolic equations on embedded grids of different resolutions may produce 
phenomena similar to that of the propagation of waves through materials of dif- 
ferent densities. There can be interference of waves which have passed through 
relined regions with those that have not. This interference is a weak instability and 
obviously results in a grossly inaccurate solution. 

We address the issues of accuracy and conservation in how and where we decide 
to place tine grids. In the adaptive scheme, line grid boundary values are inter- 
polated bilinearly from other grids. We use an estimate of the error in the solution 
to place the line grids and periodically re-estimate and replace the line grids so that 
regions of high error always remain contained in the line grids. The regions of high 
error (the disturbances) must never be allowed to pass through fine grid boundaries 
onto the coarse grid. Thus fine grid boundaries always lie in areas where the 
solution error is low, i.e., where bilinear interpolation will introduce only small 
errors. Our integrations indicate that in this context the use of bilinear interpolation 
is sufficient to ensure accurate and stable solutions. 
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4. TEST CASE RESULTS 

In this section we present results for two flow simulations using the adaptive 
primitive equations model. We present no detailed data concerning run times for 
different models. Our calculations show a breakeven point for using adaptive 
methods over a single fine grid of 5&60% line grid coverage in a 2-level adaptive 
model run. This model is a research model and with some optimization we feel that 
the breakeven point could be improved to 7&80%. 

4.1. Barotropic Cyclone 

The first test case for the adaptive atmospheric solver is the simulation of a 
barotropic cyclone (no vertical variation) which is being advected by an easterly 
flow in an east-west periodic channel. The equations are solved on any-plane (f = 
constant = 5.0 x lop4 SC’). There is no surface friction or energy sink other than the 
diffusion used to stabilize the computations, hence the solution should show the 
cyclone being advected toward the west with little change in its appearance. 

The initial conditions are shown in Fig. 5. The surface pressure field depicted in 
Fig. 5 is found by solving a Poisson equation which is derived by taking the 
divergence of the momentum equation and assuming that the divergence of the 
horizontal velocity field is zero. The Poisson equation is 

a VZn=-$ - - ( ( afuu) + atuu) a -- 
mean ax ax ay f) -6 

a(#tg + atuO) 
" +ay ax ay -+fu . 

)) 

FIG. 5. Initial conditions for the barotropic cyclone. Surface pressure is in millibars. Winds travel 
counterclockwise around the low pressure. The cyclone is advected toward the left by a zonal wind. 
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FIG. I. Cyclone 
any time. ~hws, = 

I . . . . . . . . . . . . . . . . . . _. 
after 3 days using adaptive model. There is only a single 
180 km, dxfi,, = 60 km. Fine grids used in the calculation 

line grid in the region at 
are displayed. 

grid. The simulations differ only slightly, this demonstrates that the orientation of 
the tine grids has little effect on the solution. 

Fine grid placement depends on an error estimate of the coarse grid solution as 
described in Section 2. Only the velocity error estimates were used to place fine 
grids. We will also present error estimates for the surface pressure rc and tem- 
perature for the baroclinically unstable jet but they are not yet used for fine grid 
placement. Figure 8 shows a typical error estimate for the u velocity field along with 
the fine grid placed over a set of flagged points derived from the error estimate. The 
error in the u velocity is normalized by 1 UI max = 27 m/s and the dimensionless error 
tolerance for flagging point is z = 0.025 (see Eq. (2.2)). For this flow the error 

H 
36 

FIG. 8. Typical error estimate of the u velocity (dimensionless x 104). The estimate has been 
normalized by 1 II 1 max = 27 m/s. 
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estimate of these fields places the line grid over the cyclone-which is where we 
expect it would be necessary. 

Initial conditions for fine grids are interpolated off the coarse grid or fine grids 
which existed before the regridding. A bicubic spline interpolation is used to obtain 
these initial values. Bilinear interpolation has been tried, but was found to excite 
spurious gravity waves (noise) which take several hours to decay. 

A critical component of the adaptive solution procedure is the ability to set 
accurately the boundary conditions for the line grid. During this set of simulations 
kinks arose in the surface pressure field close to the fine grid boundaries. Surface 
pressure errors are the result of errors in the mass divergence fields which them- 
selves are the result of errors in the specification of the inflow velocity. The numeri- 
cal scheme does not use the pressure gradient close to the boundary and the kinks 
do not have any effect on the solution. We include these results only to illustrate 
problems which can arise. 

These errors in specifying the inflow velocities may have a greater effect when 
moisture is included in the model and investigation reveals that the errors arise 
from using a numerical scheme which is inconsistent close to the boundary. One 
row in from the boundary the diffusion is second order as opposed to the interior 
fourth order diffusion. This early version of the code also used a split explicit 
scheme for advancing the gravity waves, thereby allowing the use of larger time 
steps. Use of the scheme along with the change in diffusion next to the boundaries 
was found, to promote growth of the kink. 

The adaptive scheme attempts to minimize boundary errors in a manner not con- 
nected to the structure of the numerical scheme. First, the fine grids are made large 
enough so that their boundaries are in regions of small solution error, and hence 
the values, which are interpolated in both space and time, will have small error. 
Second, if the region of high error cannot be covered by a single grid then multiple, 
overlapping grids are used. An important addition to this is that the fine grid 
boundary values must be interpolated from the best source, which is often another 
overlapping line grid. These tenets, along with a consistent numerical scheme, 
appear to be sufficient to produce reasonable solutions. 

Presented next are results from the simulation of an unstable baroclinic jet. Here 
we use a fully explicit solver. By setting as line grid boundary values the first two 
outer rows, we remove the second order diffusion from the solution, and hence, 
have a fully consistent numerical scheme. Errors in the specification of the inflow 
velocity, and hence the divergence and pressure fields, are greatly reduced. 

4.2. Baroclinically Unstable Jet 

We have chosen for our second test case to simulate the evolution of an unstable 
baroclinic jet which has been subjected to an initial perturbation. The disturbance 
which develops is commonly observed in the atmosphere and easily simulated in a 
channel. The flow’s close analog in the atmosphere and its three-dimensional nature 
allow testing of several adaptive code components untested in the two-dimensional 
flow discussed in the previous section. 
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Previous simulations of this flow were performed in order to gain an understand- 
ing of the basic physical processes driving it. Several investigators in the late sixties 
and early seventies (e.g., Williams [18], Mudrick [ 151) used models based on the 
primitive equations and the quasigeostrophic equations to simulate the developing 
baroclinic disturbance and the frontal zones associated with it. The cold and warm 
fronts have received extensive analytic study, most notably in Hoskins and Brether- 
ton [ 131. Those interested in the dynamics of this flow can consult these papers or 
for a more recent and general overview consult Holton [12]. 

For this simulation, we solve the equations on a P-plane (Coriolis parameter = 
f = f0 + fiy, /I = af/ay = constant). The grid has five layers at c = 0.1, 0.3, 0.5, 0.7, 
and 0.9. The channel has a length (west&east) of 5220 km and a width 
(south-north) of 8640 km. The north-south velocity u is initially zero and the jet 
has no variation in the east-west direction. The initially geostrophically balanced 
jet is perturbed by altering the north-south velocity (u). After several days simula- 
tion time a single dominent wave appears in the channel. The length of the channel 
is then tripled, the wave repeated twice, and the channel is now of length L= 
15,660 km. By lengthening the channel we force the adaptive code to use multiple 
overlapping line grids-as it might in actual atmospheric prediction work. 

The initial conditions for this case are shown in Figs. 9-12. The jet core, which 
contains the maximum jet velocities, is found on the (T = 0.3 layer. This wave is 
clearly present in in the plot of the absolute vorticity on the G = 0.5 layer (Fig. 9). 
This primary circulation is the result of the baroclinic instability which arises from 
the vertical shear present in the jet. 

Secondary circulations (vertical and divergent motions) are driven by absolute 
vorticity advection and temperature advection in the primary circulation and are a 
result of the hydrostatic and geostrophic nature of the flow. In the lower layers, 
regions of cold and warm temperature advection are found, respectively, at the 
trough and crest of the developing wave. The temperature advection can be seen 

I....,, . . . . ..I........................_................... ~ ...,,..,. .3 
FIG. 9. Absolute vorticity (10m6s-‘) on the 0=0.5 surface for the baroclinically unstable wave at 

I = 0 of the adaptive run. 
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cold front 

FIG. 10. Temperature (K) on the 0 = 0.9 surface at t = 0. Locations of the warm and cold fronts are 
shown. 

clearly by considerng Fig. 10, the temperature at the 0 = 0.9 level and Fig. 11, the 
winds at the same level. Horizontal shear and horizontal deformation promote the 
growth of the cold and warm fronts. The shear and deformation fields intensify in 
the flow which develops with the development of the surface pressure lows and 
highs. These surface pressure features are shown in Fig. 12. Cyclonic and 
anticyclonic circulations form at the lower levels around the surface pressure lows 
and highes. These circulations are not present in the flow in the upper layers. 

Poor representation of the fronts and/or of the jet stream lead to slower develop- 
ment or even decay of the disturbance. The strength and development of these 
features determines the adequacy of the grid resolution. Figures 13-15 show the 
results after 3 days of simulation time starting from the fields of Figs. 9-12 and 

I”“““““. ” I.. . ” ” 1 ““‘I 
t I ..~ 

, warm&o& . . . 

./ L -- .,,_ -If\.-., ,,s\_ -,,_, ,1\._,> 
. _ cold front . . . - _ 

-...-.... 

FIG. 11. Velocity vectors on the 0 = 0.9 surface at I = 0. Note the positions of the warm and cold 
fronts (shown in Fig. 10) and the positions of the surface pressure highes and lows (shown in Fig. 12) 
with respect to the wind fields. 
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FIG. 12. Surface pressure (millibars) for the baroclinically unstable wave at f = 0. 

encompass three different runs; a coarse grid run (dx = dy = 540 km, AZ = 337.5 s), 
a line grid run (Ax = Ay = 180 km, AZ = 112.5 s), and an adaptive run with a coarse 
grid Ax = Ay = 540 km, one level of refinement and a refinement ratio of three 
(hence A-G,, =&he z 180 km). In these simulations we use a value of z = 0.035 
and the velocity error estimates are normalized by 10 m/s. Figure 13 shows the 
surface pressure for the coarse, fine, and adaptive grid runs. On the coarse grid the 
surface pressure highs and lows have lost strength, whereas they have not for both 
the fine and adaptive runs. The warm and cold fronts exhibit similar behavior. The 
coarse grid fronts are weakening while in the fine and adaptive grid runs they are 
strengthening. Again we see that the coarse grid cannot adequately represent the 
flow while both the fine and adaptive calculations represent well the developing 
baroclinic disturbance. The same resolution problem is seen in the upper level flow. 
The maximum absolute vorticity associated with the jet has grown from 
1.4 x 10e4 s-l to 1.5 x lop4 SC’ after 3 days for both the fine and adaptive grid runs 
but it has diminished to 1.2 x 1O-4 sP1 in the coarse grid run. The primary wave is 
deepening except for the coarse grid run where it is being washed out. 

Examination of the surface pressure fields in Fig. 13 show that the line grid run 
results and the base grid fields for the adaptive run results do not match exactly. 
Indeed there are some very noticable differences, and the differences are even more 
pronounced in the absolute vorticity fields. This is simply because the coarse grid 
cannot possibly represent all the features that are representable on the fine grid. 
The base grid fields for the adaptive run also show the locations of the fine grids 
which have been placed based on an error estimate of the velocity fields. The 
adaptive fine grid fields match perfectly those of the fine grid run. Even the vorficity 
fields (Fig. 14) which are sensitive to small errors in the velocity compare extremely 
well with the fine grid run solution. 

In these simulations the largest errors are associated with the jet. The grid-fitting 
routine fits just a single grid over the jet but this grid is split into two overlapping 
grids so that they may be accommodated by the limited workspace in the solver. 
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COARSE 
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FIG. 13. Surface pressure in millibars at t= 72 h. Location of the fine grids in the adaptive 
calculation at I = 72 h are shown in the adaptive coarse grid plot. 
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FIG. 14. Absolute vertical vorticity ( 10m6 s-l) on the cr =OS surface at t = 72 h for the tine grid 
run (top) and for adaptive tine grid 3 (bottom). Adaptive tine grid 3 is the left fine grid shown in the 
adaptive run plot of Fig. 13. The adaptive tine grid and the line grid run absolute vorticity fields are 
almost identical. 

The error is re-estimated every 24 h and new grids created but the positions of the 
line grids change little over several days. 

Here, as in the previous simulation, the fine grids are not aligned with the base 
grid. In the overlap region the tine grids are aligned with each other but at the peri- 
odic boundary they do not overlap in a manner where their points coincide. In both 
overlap regions solutions in the overlap region agree. For this to be the case line 
grid boundary conditions must come from the other line grid in regions of overlap. 
Using only boundary conditions interpolated off the coarse grid results in unstable 
solutions. 

Surface pressure contours run smoothly up to the boundary on the fine grids in 
the adaptive run. In our previous simulation there were kinks in the surface 
pressure field and large errors in the divergence fields close to the boundary. By 
using a fully explicit scheme (which allows the setting of boundary condition values 
from overlapping grids in regions of overlap) and by setting the variables at the first 
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two interior rows as boundary values we have eliminated the kinks and large errors. 
On the fine grids the disturbances are well represented even in the overlap regions. 
No noise develops in the overlap region or at the coarse-fine grid boundaries even 
when these boundaries and overlaps have points which are not coincident. Indeed 
it is difficult to tell where the fine grid boundaries and regions of overlap are. Our 
disturbances remain as three identical disturbances even though different parts of 
the disturbances are represented in different overlap regions. Figure 15 is a plot 

GRID3 GRID2 GRID2 GRID3 
FIG. 15. Temperature (K) on the 0 = 0.9 surface at t = 72 h for adaptive tine grids 3 (top), and the 

overlaps between fine grids 2 and 3 (bottom). The tine grids overlap in the center of the domain and 
also at the edges of the domain because of the periodic boundary conditions. The solutions agree in the 
overlap. 
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channel we should find that the total energy is constant over time. This is not the 
case, but in all cases the gain in energy in the systems is less than a tenth of a per- 
cent of the average TPE, again on the. order of the truncation error in the scheme. 

One last run was made using two levels of refinement. Figure 1 shows the grid 
arrangement at 20 h. Regridding at level 2 was performed every 12 h and level 3 
every 4 h (refinement ration r = 3). The coarse grid has dx = Ay = 540 km, the first 
level of refinement has Ax “N Ay x 180 km, and the second level of refinement has 
Ax z Ay x 60 km. Again the refinement is found to be needed around the jet and 
the maximum errors are at the jet core. A single fine grid run with Ax = 60 km, i.e., 
of the resolution of the fine grids in the adaptive run, indicates that the increase in 
resolution from 180 to 60 km was unnecessary. We preformed this integration as a 
test using multiple levels of refinement. All general conclusions found for the 
two-level refinement case hold when using three levels. 

5. ERROR ESTIMATION 

Fine grids are placed in the solution domain based on an estimate of the trunca- 
tion error. The procedure used to estimate the truncation error is based on 
Richardson extrapolation and it has been described in Section 2. 

The primary advantage of the Richardson-based error estimate technique is that 
the form of the truncation error need not be known. The exact truncation error 
associated with the discretized equations (3.1 k(3.5) is complex and difficult to 
derive. Also the leading order truncation error terms consists of higher order 
derivatives which are difficult to compute with more than first or second order 
accuracy. The truncation error estimate obtained using Eq. (2.2) with a qth order 
method is accurate to O(kY+ ’ + hY’ ’ ) which for a second order scheme such as the 
one used in the present solver produces a third order accurate estimate of the 
truncation error. 

The error estimate for the u velocity field in the barotropic cyclone case (Fig. 8) 
show that the regions of high error to be around the cyclone. The coarseness of the 
grid precludes any deeper analysis. To further examine the error estimates we have 
estimated the truncation error for the fine grid run at time t = 72 h. The error 
estimates on the fine grid contain detail which cannot be represented on coarser 
grids. By comparing the Richardson estimate with computations of the exact trun- 
cation error we can judge the performance of the scheme. 

First we should examine the equations and directly estimate what the size of the 
truncation error should be. Our scheme is second order in both space and time. 
Small time steps are used in the explicit scheme due to the presence of the fast 
gravity waves. Thus we expect that the dominent truncation error will arise due to 
the spatial discretization employed and hence we will focus on the error in the spa- 
tial differencing. Later comparison of the spatial truncation error with the total 
truncation error shows that the spatial error does dominate. We can estimate the 
size of the truncation error by first scaling and then nondimensionalizing 
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Eqs. (3.1 t(3.5) along with the truncation error. The scaling and nondimen- 
sionalization of Eq. (3.1), the u momentum equation, along with the spatial trunca- 
tion error, is contained in Appendix 1. 

For large-scale atmospheric flows we find that the pressure gradient and Coriolis 
forces must balance each other and that the advection terms are an order of 
magnitude smaller than these. This well-known result describes the geostrophic 
nature of the atmosphere, i.e., the approximate balance between the pressure 
gradient and Coriolis forces. Large-scale flows can often be considered in terms of 
adjustments to maintain an approximately geostrophic and hydrostatic state. 

The finite difference scheme used to discretize the equations is second order 
accurate: the leading order truncation error term is of order Ok(k* + h*). This trun- 
cation error is the sum of the truncation errors for the individual terms, all of which 
are of second order. In the nondimensional equations the pressure gradient and 
Coriolis terms have coefficients of 0( 10) while the advection terms have coefficients 
of 0( 1). If we look at the order of accuracy of the scheme we might expect that the 
truncation errors for the Coriolis and pressure gradient discretizations would be an 
order of magnitude larger than those of the advection terms. This is not the case. 

The leading order terms in the nondimensional truncation errors for the Coriolis, 
pressure gradient, and advection terms are 

All primed variables are dimensionless and of 0( 1) and their derivatives are of 
O(1); thus all the truncation error terms are of the same relative size. Direct 
computations of these terms confirm this. Thus it appears we cannot ignore any of 
the terms when computing the truncation error for the equations directly. 

Figure 17 is a plot of the truncation error in the u velocity field at r~ =0.3 (jet 
core) at t = 72 h calculated using the Richardson-based technique. Figure 18 is a 
plot of the truncation error associated with the spatial discretization of the pressure 
gradient, Coriolis, and advection terms computed using the results in Appendix 1. 
It is nondimensionalized by multiplying by At/(nU), i.e., in the same way the 
Richardson estimate is nondimensionalized. The two estimates compare very well. 
Both the magnitude and distribution of the error are accurately predicted by 
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FIG. 17. Truncation error estimate using Eq. (2.2) for the u velocity field at t = 72 h on the 0 = 0.3 

surface. The estimate has been normalized by dividing by U= 10 m/s (dimensionless, x 105). 

the Richardson technique. We originally assumed that the spatial truncation 
error dominated the overall truncation error. This comparison indicates that the 
assumption is correct. 

We have also estimated the error in the surface pressure and temperature fields. 
The errors in temperature are large where the time rate of change of the tem- 
perature is large. This occurs in the frontal regions where the temperature gradients 
and temperature advection are large. The error estimates for the surface pressure 
are very noisy. The noise may arise due to imbalanced initial conditions on the 2h 
error estimate grid which would lead to gravity waves and hence noise on the 2h 
grid and a noisy error estimate. Also the error in the surface pressure is small 
relative to the scaled surface pressure and the significance of regions of high error 
may be small. 

FIG. 18. Truncation error estimate computed from the formulas in Appendix 1 (dimensionless, 
x 105). Normalized and nondimensionalized by multiplying by df/(nU). 
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6. CONCLUSIONS 

An adaptive grid refinement technique has been used to compute solutions to 
equations describing large-scale atmospheric flow. Fine grids are placed automati- 
cally based on a Richardson-type estimate of the local truncation error in the 
solution. Simulations of a barotropic cyclone and of a baroclinically unstable jet 
were performed to demonstrate the feasibility of using techniques of this type in 
NWP and similar large-scale flow computations. 

Several critical components ensure an accurate, smooth solution. Numerical 
schemes must be consistent up to the boundaries. Changing operators close to the 
boundaries may cause kinks and discontinuities. When tine grids overlap, boundary 
values for one fine grid must come from the other. This necessitates the use of a 
fully explicit scheme (explicit even with respect to the boundary conditions) or 
some new scheme which would take into account the overlapping line mesh con- 
straint. Higher order interpolation techniques for use in setting the initial condi- 
tions are necessary so as not to excite gravity waves when initializing any fine grid. 
Given these conditions the present solver conserves mass and energy for these flow 
conditions and produces results which compare well with those on a single fine grid. 

Richardson estimates of the truncation error compare well with directly com- 
puted truncation errors. The truncation error arising from the spatial discretization 
dominates the truncation error and is evenly distributed among the terms in the 
equations. The error is high in regions where we would expect it to be-around 
the cyclone and the jet stream, and produces the desired refinement. No simpler 
technique for estimating the truncation error is apparent. 

The success of these simulations strongly supports the concept that refinement 
should occur only where dictated by the error in the numerical solution and that 
this is sufficient to improve the accuracy and overall resolution of the entire solu- 
tion. Using this simple but key concept has produced the first adaptive solution of 
atmospheric flows and the first detailed, quantitative results concerning the error in 
the numerical solutions. 

Finally, we wish to discuss some practical considerations concerning the use of 
adaptive models for numerical weather prediction. An adaptive model for large- 
scale atmospheric flow which includes realistic physics has not yet been developed 
or tested. Only in this way, by testing with actual data and with analyses of its 
predictive capabilities, will the true worth of the adaptive method become known. 
We forsee no major difficulties in adding physics to the model or in using real data. 

A more immediate research problem connected with developing an operational, 
adaptive, large-scale atmospheric flow solver is the development of a splitting 
scheme for use in an adaptive model. In our simulations we used a fully explicit 
solver because of the need to have fully explicit boundary conditions in the case 
where line grids overlap and so that continuity boundary conditions could be suc- 
cessfully applied. Splitting methods can allow the use of time steps 5 to 10 times 
larger than those used in an explicit technique with little added cost per time step. 
Even though the overhead intrinsic to the adaptive method is relatively small, the 
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development of a splitting technique for “adaptive” use may well prove critical in 
the development of a large-scale operational adaptive atmospheric model. 

APPENDIX 1 

We wish to estimate the relative size of the truncation errors associated with the 
spatial discretization. This can be done by scaling and nondimensionalizing the 
equations and the truncation error associated with the discretization. In this model 
we do not reline in the vertical and our Richardson error estimate does not estimate 
errors in the vertical differencing. Thus to simplify the analysis we do not consider 
the vertical advection terms. 

For our purposes it is sufficient to analyze just one momentum equation. We 
scale and nondimensionalize the u momentum equation (3.1) with the following 
changes of variables: 

n=n, +7w, no = 1000 mb, 

fi= lOmb, 

do = 10’ m2/s2, 

fj = lo3 m2/s2, 

RT, = 10’ m2/s2, 

RF= lo4 m2/s2, 

U = 10 m/s, 

d=do +d4’, 

T= T,, + fT', 

u = Uu', 

v = Uv', 

x=Lx', 

y = LY’, 

t = tot', 

f =fof’, 

L = lo6 meters, 

to =L/U= lo5 s, 

f. = 10-4/s 

where the primed variables are dimensionless and of 0( 1). The scaling values are 
appropriate for large-scale atmospheric flows. If we substitute these into Eq. (3.1), 
drop the obviously lower order terms, and divide through by ~oU/to we arrive at 
the following nondimensional momentum equation: 

ad ut, a(dd) + a(dd) to6 84’ -- -- 
atl= L ai ay’ A 

--- 
L UL axI 

O(l) O(10) 
1 

-sRT,,$$+ fotoffv’. 
_o 

O(10) 
0(1(-J) 
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Using these scalings we find that, for for large-scale atmospheric flows, the Coriolis 
term must balance the pressure gradient terms and the advection terms are an order 
of magnitude smaller than either of these. This just describes the geostrophic nature 
of the flow. 

We can now use these results to scale and nondimensionalize the truncation error 
associated with the spatial discretization of Eq. (3.1). The leading order truncation 
errors associated with the terms in Eq. (3.1) are 

Ax2 
@-MU) = +ct un,, + : R(U, + u,J + n,u,) + O(Ax3). 

We nondimensionalize the truncation errors by substituting the previously defined 
primed variables and dividing by Urr&,. The leading order terms are given in 
Section 5. The nondimensionalization of the truncation errors indicate that all are 
of the same size, even though the respective terms associated with the truncation 
errors are not. 
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